Zinc sulphide needles containing new polytypes. By I. Kiflawi, S. Mardix and Z. H. Kalman, Department of

 Physics, The Hebrew University, Jerusalem, Israel(Received 20 January 1969)
Two ZnS needles containing eleven new polytypes were found. One needle contains the new polytypes $18 L(5445), 18 L(7524), 54 R(5553)_{3}, 54 R(6534)_{3}$ and $54 R(7533)_{3}$ of the family $18 L$. The second needle contains the new polytypes $14 L(4334), 42 R(86)_{3}, 42 R(113)_{3}, 42 R(5432)_{3}$ and $42 R(6422)_{3}$ of the family $14 L$. X-ray oscillation photographs are shown. The observed and calculated intensities are compared.

Most of the ZnS polytypes hitherto reported were found in platelets, whereas the structure of ZnS needles investigated so far has been found to be mainly pure hexagonal, or hexagonal with stacking faults (Hauptmanová \& Pátek, 1963; Mardix, 1966). During our work on polytypism in ZnS needles, we found polytypes of the families $14 L$ and $18 L$ in two needles. Some of the polytypes found have not been reported so far. They are listed in Table 1.

Table 1. List of polytypes found

Specimen	New polytypes found	Other polytypes found
241/52	$18 L$ (5445)	
	$18 L$ (6534)	
	$18 L$ (7524)	
	$54 R\binom{5}{5}_{3}$	
	$54 R(7362)_{3}$	
	$54 R\left(\begin{array}{llll}5 & 3\end{array}\right)_{3}$	
193/53	$14 L\left(\begin{array}{llll}4 & 3 & 4\end{array}\right)$	$14 L$ (5 423 3)*
	$42 R(86){ }_{3}$	$42 R(122){ }_{3} \dagger$
	$42 R(113)_{3}$	$42 R(95) 3 \ddagger$
	$42 R\left(\begin{array}{llll}4 & 3\end{array}\right)_{3}$	
	$42 R(6422)_{3}$	
* Reported earlier (Brafman, Alexander \& Steinberger, 1967).		
\dagger Reported earlier (Kiflawi, Mardix \& Steinberger, 1969).		
\ddagger Reflexion spots of a very narrow region of this polytype		
are seen in Fig. 1 (6). A larger region was already found in		
nother cry	and will be reported.	

The needles were grown by sublimation at $1200^{\circ} \mathrm{C}$ from pure ZnS powder. The width of specimen $241 / 52$ is ~ 0.25 mm and of specimen $193 / 53 \sim 0.15 \mathrm{~mm}$. Both needles have a large hole along the c axis. The width of the polytype regions photographed is between $\sim 0.1 \mathrm{~mm}$ and 0.3 mm . $\mathrm{Cu} K$ radiation, generated by a Hilger \& Watts X-ray microfocus generator, was used. The (10.l) row lines of the 15° oscillation photographs of the new polytypes are shown in Fig. 1.
The method of identification of the new polytypes is similar to the method described previously (Mardix, Alexander, Brafman \& Steinberger, 1967), except for the auxiliary birefringence measurement, which determines the length of the Zhdanov sequence. The birefringence measurement was not feasible, because of the peculiar shape of the needles. Thus, for the first region identified in a specimen, a larger number of Zhdanov sequences had to be taken into account than in a similar case for platelets. The identification of the other polytypes of the same specimen is much simpler, because the length of the Zhdanov sequence
could be ascertained by comparing the optical retardation in the polytype to be identified with the retardation in the first polytype.

Observed and calculated intensity distributions of the new polytypes are given in Table 2.

Table 2. Comparison of observed and calculated intensities of the new polytypes
Polytypes found in specimen 193/53

l	Obs.	Calc.
$14 L\left(\begin{array}{lll}4 & 3 & 3\end{array} 4\right) \S$		
0	w	$(0>1)$
1	w	$5 \cdot 24$
2		m
$3 \cdot 62$		
3	s	$16 \cdot 71$
4	s	$47 \cdot 64$
5		$v v s$
6		$100 \cdot 01$
7	m	$12 \cdot 95$
7	s	$43 \cdot 25$

§ The observed intensities are symmetrical with respect to the zero line $(l=0)$.

$42 R(86){ }_{3}$			
1	$v w$		0.775
4	w	$(4>-5)$	4.69
7	a		$0 \cdot 00$
10	s		$18 \cdot 85$
13	$v s$		$53 \cdot 54$
16	vs		$42 \cdot 55$
19	m		$7 \cdot 61$
-2		$(-2>-8)$	$2 \cdot 61$
-5	w	(-5>-2)	$3 \cdot 39$
-8	w		$1 \cdot 86$
-11	s	$(-11 \sim-17)$	32.03
-14	evs		$100 \cdot 00$
-17	s	$(-17>10)$	29.96
-20	w	$(-20 \sim-8)$	1.77
$42 R(113){ }_{3}$			
1	vew		$0 \cdot 108$
4	w		$1 \cdot 60$
7	m		$4 \cdot 12$
10	m		$6 \cdot 41$
13	m	($13>19$)	$7 \cdot 45$
16	m	$(16 \approx 13 \approx 10)$	$6 \cdot 93$
19	m	$(19>7)$	$5 \cdot 34$
-2	$v w$		$0 \cdot 425$
-5	w	$(-5>4)$	$2 \cdot 38$
-8	m	$(-8 \approx 7)$	$4 \cdot 97$
-11	m	$(-11>-8)$	$6 \cdot 93$
-14	ves		$100 \cdot 00$
-17	m	$(-17 \approx-11)$	$6 \cdot 48$
-20	m		$4 \cdot 72$

Table 2 (cont.)

$42 R(5432){ }_{3}$			
1	w		$3 \cdot 10$
4	w	(4>1)	$5 \cdot 15$
7	s	($7 \sim 16$)	$32 \cdot 55$
10	w	$(10>4)$	$6 \cdot 61$
13	vs	(13~-17)	64.96
16	s	$(16>19)$	32.05
19	s		20.03
-2	m		10.46
-5	w		$3 \cdot 70$
-8	vow		0.748
-11	vvs		$100 \cdot 00$
-14	vs		41.33
-17	vs	$(-17>-14)$	$56 \cdot 43$
-20	s		$27 \cdot 72$
$42 R(6422) 3$			
1	w		6.96
4	w	(4>1)	9.58
7	a		0.00
10	vs		58.88
13	vs	$(13 \approx 10)$	59.07
16	m		11.80
19	vs	$(19 \approx 10)$	53.82
-2	m	($-2>-20$)	18.45
-5	vow		0.940
-8	vw		2.05
-11	vos		100.00
-14	vs	$(-14>-17)$	$70 \cdot 64$
-17	vs	$(-17>13)$	$61 \cdot 17$
-20	m	$(-20>16)$	$15 \cdot 88$

Polytypes found in the specimen 241/52

l	Obs.	
$18 L(5445)^{*}$		
0	m	$(0>3)$
1	w	
2	$v w$	
3		m
4	s	
5	$v s$	
6	s	
7	$v v s$	
8	w	$(8>1)$
9	m	$(9>0)$

* The observed intensities are symmetrical with respect to the zero line ($l=0$).

$18 L(6534)$			
0	a	$0 \cdot 00$	
1	w	$4 \cdot 44$	
2	w	$(2>1)$	$5 \cdot 21$
3	w	$(3>2)$	$6 \cdot 15$
4	m	$14 \cdot 77$	
5	$v s$	$55 \cdot 63$	
6	s	$33 \cdot 33$	
7	$v s$	$(7>5)$	$63 \cdot 19$
8	$v w$	$3 \cdot 88$	
9	w	$6 \cdot 13$	
-1	w	$5 \cdot 34$	
-2	$v v w$	$1 \cdot 47$	
-3	w	$6 \cdot 15$	
-4	s	$34 \cdot 67$	
-5	w	$6 \cdot 31$	
-6	$v v s$	$100 \cdot 00$	
-7	w	$5 \cdot 97$	
-8	s	$32 \cdot 14$	
-9	w	$6 \cdot 13$	

Table 2 (cont.)
18L (7524)

0	w	$8 \cdot 56$
1	$v w(1>8)$	$4 \cdot 53$
2	w	7.97
3	w	7.28
4	m	$9 \cdot 62$
5	$v s$	$61 \cdot 92$
6	$v s$	56.96
7	$v s$	67.86
8	$v w$	2.53
9	$v v w$	1.81
-1	$v v w(-1>-2)$	1.49
-2	$v v w$	0.272
-3	w	7.28
-4	w	$6 \cdot 40$
-5	$v v s$	100.00
-6	s	30.69
-7	s	31.84
-8	$s v(-8>-7)$	49.16
-9	$v v w(-9 \sim-1)$	1.18

$54 R(7362)_{3}$			
1	$v w$	1.62	
4	w	4.39	
7	w	$(7>22)$	$5 \cdot 08$
10	m	7.67	
13	s	12.22	
16	m	6.94	
19	s	$(19>13)$	$16 \cdot 30$
22	w	3.48	
25	m	14.71	
-2	$v v w$	0.789	
-5	w	$(-5 \sim 22)$	3.47
-8	w	2.87	
-11	w	$(-11 \approx-5>-8)$	3.37
-14	s	23.87	
-17	$v v s$	$100 \cdot 00$	
-20	s	23.79	
-23	$v s$	$31 \cdot 88$	
-26	$v v w$	0.950	

54R (753 3) ${ }_{3}$

1	w		$2 \cdot 86$
4	w	$(4 \approx 1)$	2.35
7	w	$(7>4)$	4.61
10	s		$21 \cdot 43$
13	m	$11 \cdot 01$	
16	s	37.59	
19	$v s$	$65 \cdot 81$	
22	w	1.96	
25	s	$26 \cdot 57$	
-2	$v v w$	0.206	
-5	$v w$	0.547	
-8	m	$(-8>-11)$	$16 \cdot 91$
-11	m	$(-11>-14)$	13.71
-14	m	8.44	
-17	$v v s$	$14>-26)$	$100 \cdot 00$
-20	$v s$	$45 \cdot 83$	
-23	s	20.06	
-26	m	6.33	

$54 R(555$ 3) 3

w	4.38
a	0.094
w	4.78
s	$22 \cdot 24$
$v v w$	0.876
$v s \quad(16>22)$	$77 \cdot 09$
w	
	4.78

Fig. 1. (10.l) row lines of oscillation photographs about the c axis of the new polytypes. $\mathrm{Cu} K$ radiation, 60 mm diameter camera. Magnification $\times 2 \cdot 5$. The zero line indicated by arrow.
No.
1
2
3
4
5
6
7

8
9
10

Polytypes
$18 L(5445) \& 54 R(5553)_{3}$
$18 L$ (6534)
$18 L(7524) \& 54 R\left(\begin{array}{lll}7 & 5 & 3\end{array}\right)_{3}$
$54 R\left(\begin{array}{lll}7 & 3 & 6\end{array}\right)_{3}$
$54 R\left(\begin{array}{llll}7 & 5 & 3 & 3\end{array}\right)_{3}$
$14 L\left(\begin{array}{llll}4 & 3 & 4\end{array}\right) \& 42 R(95)_{3}$
$42 R(86)_{3}$ and spots of other polytypes
from adjacent regions
$42 R(113)_{3}$
$42 R\left(\begin{array}{lll}5 & 3 & 2\end{array}\right)_{3}$
$42 R\left(\begin{array}{ll}6 & 2\end{array}\right)_{3}$

Table 2 (cont.)

22	$v s$	$58 \cdot 28$
25	a	0.019
-2	$v w$	$2 \cdot 13$
-5	w	$5 \cdot 37$
-8	a	$0 \cdot 004$
-11	s	$29 \cdot 72$
-14	w	$7 \cdot 11$
-17	$v s s$	$100 \cdot 00$
-20	s	$(-20>-23)$
-23	s	$40 \cdot 17$
-26	m	$29 \cdot 24$
	m	$10 \cdot 73$

References

Brafman, O., Alexander, E. \& Steinberger, I. T. (1967). Acta Cryst. 22, 347.
Hauptmanová, K. \& Pátek, K. (1963). Phys. Stat. Sol. 3, 383.

Kiflawi, I., Mardix, S. \& Steinberger, I. T. (1969). Acta Cryst. To be published.
Mardix, C. (1966). M. Sc. Thesis, The Hebrew Univ., Jerusalem.
Mardix, S., Alexander, E., Brafman, O. \& Steinberger, I. T. (1967). Acta Cryst. 22, 808.

Acta Cryst. (1969). B25, 2415
New double polytype region in a zinc sulphide needle. By I. Kiflawi and S. Mardix, Department of Physics, The
Hebrew University, Jerusalem, Israel
(Received 19 February 1969)
Eleven new polytypes were found in a zinc sulphide needle. Two of them, $24 L$ (653532) and $72 R(65335 \text { 2) })_{3}$ were contained in a double polytype region.

The concept of a double polytype region was introduced in a previous publication (Mardix, Kiflawi \& Kalman 1969). It is a region of uniform birefringence containing a great number of narrow domains belonging to two different polytypes. The formation of this kind of region was explained by a periodic slip process (Mardix, Kalman \& Steinberger, 1968) propagating with the same periodicity in both directions of the c axis. The components of the three double polytype regions previously reported were rhombohedral polytypes, whilst the double polytype region reported in this work consists of a mixture of two polytypes; one rhombohedral $72 R$ (653352) 3_{3} and the other hexagonal $24 L$ (653532). These polytypes can be formed from the parent polytype $72 R(653442)_{3}$ by a single slip of the 19th layer propagating with a periodicity of 24 in both directions of the c axis. The two polytypes have only one pair of successive Zhdanov numbers different in their Zhdanov sequences, in agreement with the properties of this kind of polytype region stated in the above mentioned work.

The needle No. 106/34 investigated in this work was grown from the vapour phase at approximately $1200^{\circ} \mathrm{C}$ from pure ZnS powder. It contains single polytype regions as well as the double polytype region. The average diameter of the needle is 0.25 mm and it has a large hole along its c axis. A list of the polytypes found is given in Table 1. Eleven of them are new polytypes. Observed and calculated intensity distributions of the new polytypes are compared in Table 2. Their X-ray oscillation photographs are shown in Fig. 1. The procedure of identification is similar to that decribed elsewhere (Mardix, Alexander, Brafman \& Steinberger, 1967).

Table 1. Polytypes found	
Region	New polytypes found
a	
b	$\left\{\begin{array}{l}24 L \\ 72 R\left(\begin{array}{llllllll}6 & 5 & 5 & 3 & 2\end{array}\right)\end{array}\right.$
c	$24 L(22622622)$
d	$72 R(10734)_{3}$

Table 1 (cont.)

Region	New polytypes found	Other polytypes found
$\begin{aligned} & e \\ & f \end{aligned}$	$72 R(11553)_{3}$	
$\left.\begin{array}{l}g \\ h\end{array}\right\}$	$72 R(735252) 3$	
,	$72 R\left(\begin{array}{l}\text { 9 }\end{array} 35322\right)_{3}$	
j	$72 R\left(\begin{array}{ll}14523) \\ \\ \\ \end{array}\right.$	
k	$24 L$ (21 3)	
l	$72 R(14532){ }_{3}$	
m		24L (7557)*

* Previously reported (Mardix, Brafman \& Steinberger, 1967).

Table 2. Comparison of the observed and calculated intensities of the new polytypes

l	Obs.		Calc.
$72 R(653352) 3$			
1	$v w$		$2 \cdot 56$
4	$v w$		$2 \cdot 43$
7	vow		$0 \cdot 190$
10	w		$5 \cdot 37$
13	$m \quad(13>34)$		12.41
16	w		$5 \cdot 21$
19	m		$17 \cdot 30$
22	vos		$100 \cdot 00$
25	vw		$2 \cdot 70$
28	$s \quad(28>31)$		34.54
31			27.62
34	$\stackrel{s}{m}$		$9 \cdot 62$
-2	vow		0.977
-5	w		4.72
-8	vw		$2 \cdot 35$
-11	m		$10 \cdot 50$
-14	m ((-14~-11)	$12 \cdot 67$
-17			13.05
-20	vw	$(-20>-8)$	$3 \cdot 45$
-23	vs \quad -		52.31
-26	s		22.07
-29	vw		2.45
-32 -35	$\stackrel{s}{v w}$		$25 \cdot 20$
-35			$2 \cdot 44$

